Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Novel Structural and Functional Motifs in cellulose synthase (CesA) Genes of Bread Wheat (Triticum aestivum, L.).

Identifieur interne : 001748 ( Main/Exploration ); précédent : 001747; suivant : 001749

Novel Structural and Functional Motifs in cellulose synthase (CesA) Genes of Bread Wheat (Triticum aestivum, L.).

Auteurs : Simerjeet Kaur [Canada] ; Kanwarpal S. Dhugga [États-Unis] ; Kulvinder Gill [États-Unis] ; Jaswinder Singh [Canada]

Source :

RBID : pubmed:26771740

Descripteurs français

English descriptors

Abstract

Cellulose is the primary determinant of mechanical strength in plant tissues. Late-season lodging is inversely related to the amount of cellulose in a unit length of the stem. Wheat is the most widely grown of all the crops globally, yet information on its CesA gene family is limited. We have identified 22 CesA genes from bread wheat, which include homoeologs from each of the three genomes, and named them as TaCesAXA, TaCesAXB or TaCesAXD, where X denotes the gene number and the last suffix stands for the respective genome. Sequence analyses of the CESA proteins from wheat and their orthologs from barley, maize, rice, and several dicot species (Arabidopsis, beet, cotton, poplar, potato, rose gum and soybean) revealed motifs unique to monocots (Poales) or dicots. Novel structural motifs CQIC and SVICEXWFA were identified, which distinguished the CESAs involved in the formation of primary and secondary cell wall (PCW and SCW) in all the species. We also identified several new motifs specific to monocots or dicots. The conserved motifs identified in this study possibly play functional roles specific to PCW or SCW formation. The new insights from this study advance our knowledge about the structure, function and evolution of the CesA family in plants in general and wheat in particular. This information will be useful in improving culm strength to reduce lodging or alter wall composition to improve biofuel production.

DOI: 10.1371/journal.pone.0147046
PubMed: 26771740
PubMed Central: PMC4714848


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Novel Structural and Functional Motifs in cellulose synthase (CesA) Genes of Bread Wheat (Triticum aestivum, L.).</title>
<author>
<name sortKey="Kaur, Simerjeet" sort="Kaur, Simerjeet" uniqKey="Kaur S" first="Simerjeet" last="Kaur">Simerjeet Kaur</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Science, McGill University, Sainte Anne de Bellevue, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Plant Science, McGill University, Sainte Anne de Bellevue, QC</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dhugga, Kanwarpal S" sort="Dhugga, Kanwarpal S" uniqKey="Dhugga K" first="Kanwarpal S" last="Dhugga">Kanwarpal S. Dhugga</name>
<affiliation wicri:level="2">
<nlm:affiliation>Genetic Discovery, DuPont Pioneer, 7300 NW 62nd Avenue, Johnston, IA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Genetic Discovery, DuPont Pioneer, 7300 NW 62nd Avenue, Johnston, IA</wicri:regionArea>
<placeName>
<region type="state">Iowa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gill, Kulvinder" sort="Gill, Kulvinder" uniqKey="Gill K" first="Kulvinder" last="Gill">Kulvinder Gill</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Crop and Soil Science, Washington State University, Pullman, WA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Crop and Soil Science, Washington State University, Pullman, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Singh, Jaswinder" sort="Singh, Jaswinder" uniqKey="Singh J" first="Jaswinder" last="Singh">Jaswinder Singh</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Science, McGill University, Sainte Anne de Bellevue, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Plant Science, McGill University, Sainte Anne de Bellevue, QC</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26771740</idno>
<idno type="pmid">26771740</idno>
<idno type="doi">10.1371/journal.pone.0147046</idno>
<idno type="pmc">PMC4714848</idno>
<idno type="wicri:Area/Main/Corpus">001961</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001961</idno>
<idno type="wicri:Area/Main/Curation">001961</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001961</idno>
<idno type="wicri:Area/Main/Exploration">001961</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Novel Structural and Functional Motifs in cellulose synthase (CesA) Genes of Bread Wheat (Triticum aestivum, L.).</title>
<author>
<name sortKey="Kaur, Simerjeet" sort="Kaur, Simerjeet" uniqKey="Kaur S" first="Simerjeet" last="Kaur">Simerjeet Kaur</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Science, McGill University, Sainte Anne de Bellevue, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Plant Science, McGill University, Sainte Anne de Bellevue, QC</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dhugga, Kanwarpal S" sort="Dhugga, Kanwarpal S" uniqKey="Dhugga K" first="Kanwarpal S" last="Dhugga">Kanwarpal S. Dhugga</name>
<affiliation wicri:level="2">
<nlm:affiliation>Genetic Discovery, DuPont Pioneer, 7300 NW 62nd Avenue, Johnston, IA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Genetic Discovery, DuPont Pioneer, 7300 NW 62nd Avenue, Johnston, IA</wicri:regionArea>
<placeName>
<region type="state">Iowa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gill, Kulvinder" sort="Gill, Kulvinder" uniqKey="Gill K" first="Kulvinder" last="Gill">Kulvinder Gill</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Crop and Soil Science, Washington State University, Pullman, WA, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Crop and Soil Science, Washington State University, Pullman, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Singh, Jaswinder" sort="Singh, Jaswinder" uniqKey="Singh J" first="Jaswinder" last="Singh">Jaswinder Singh</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Science, McGill University, Sainte Anne de Bellevue, QC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Plant Science, McGill University, Sainte Anne de Bellevue, QC</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Glucosyltransferases (chemistry)</term>
<term>Glucosyltransferases (metabolism)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (metabolism)</term>
<term>Triticum (enzymology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Glucosyltransferases (composition chimique)</term>
<term>Glucosyltransferases (métabolisme)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Triticum (enzymologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glucosyltransferases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glucosyltransferases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glucosyltransferases</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glucosyltransferases</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cellulose is the primary determinant of mechanical strength in plant tissues. Late-season lodging is inversely related to the amount of cellulose in a unit length of the stem. Wheat is the most widely grown of all the crops globally, yet information on its CesA gene family is limited. We have identified 22 CesA genes from bread wheat, which include homoeologs from each of the three genomes, and named them as TaCesAXA, TaCesAXB or TaCesAXD, where X denotes the gene number and the last suffix stands for the respective genome. Sequence analyses of the CESA proteins from wheat and their orthologs from barley, maize, rice, and several dicot species (Arabidopsis, beet, cotton, poplar, potato, rose gum and soybean) revealed motifs unique to monocots (Poales) or dicots. Novel structural motifs CQIC and SVICEXWFA were identified, which distinguished the CESAs involved in the formation of primary and secondary cell wall (PCW and SCW) in all the species. We also identified several new motifs specific to monocots or dicots. The conserved motifs identified in this study possibly play functional roles specific to PCW or SCW formation. The new insights from this study advance our knowledge about the structure, function and evolution of the CesA family in plants in general and wheat in particular. This information will be useful in improving culm strength to reduce lodging or alter wall composition to improve biofuel production. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26771740</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>07</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Novel Structural and Functional Motifs in cellulose synthase (CesA) Genes of Bread Wheat (Triticum aestivum, L.).</ArticleTitle>
<Pagination>
<MedlinePgn>e0147046</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0147046</ELocationID>
<Abstract>
<AbstractText>Cellulose is the primary determinant of mechanical strength in plant tissues. Late-season lodging is inversely related to the amount of cellulose in a unit length of the stem. Wheat is the most widely grown of all the crops globally, yet information on its CesA gene family is limited. We have identified 22 CesA genes from bread wheat, which include homoeologs from each of the three genomes, and named them as TaCesAXA, TaCesAXB or TaCesAXD, where X denotes the gene number and the last suffix stands for the respective genome. Sequence analyses of the CESA proteins from wheat and their orthologs from barley, maize, rice, and several dicot species (Arabidopsis, beet, cotton, poplar, potato, rose gum and soybean) revealed motifs unique to monocots (Poales) or dicots. Novel structural motifs CQIC and SVICEXWFA were identified, which distinguished the CESAs involved in the formation of primary and secondary cell wall (PCW and SCW) in all the species. We also identified several new motifs specific to monocots or dicots. The conserved motifs identified in this study possibly play functional roles specific to PCW or SCW formation. The new insights from this study advance our knowledge about the structure, function and evolution of the CesA family in plants in general and wheat in particular. This information will be useful in improving culm strength to reduce lodging or alter wall composition to improve biofuel production. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kaur</LastName>
<ForeName>Simerjeet</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Science, McGill University, Sainte Anne de Bellevue, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dhugga</LastName>
<ForeName>Kanwarpal S</ForeName>
<Initials>KS</Initials>
<AffiliationInfo>
<Affiliation>Genetic Discovery, DuPont Pioneer, 7300 NW 62nd Avenue, Johnston, IA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gill</LastName>
<ForeName>Kulvinder</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Crop and Soil Science, Washington State University, Pullman, WA, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Singh</LastName>
<ForeName>Jaswinder</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Science, McGill University, Sainte Anne de Bellevue, QC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>01</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.-</RegistryNumber>
<NameOfSubstance UI="D005964">Glucosyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.-</RegistryNumber>
<NameOfSubstance UI="C478648">cellulose synthase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005964" MajorTopicYN="N">Glucosyltransferases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>06</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>12</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>1</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>1</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>7</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26771740</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0147046</ArticleId>
<ArticleId IdType="pii">PONE-D-15-28714</ArticleId>
<ArticleId IdType="pmc">PMC4714848</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1450-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12538856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Dec;26(12):4834-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25490917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 Oct;224(5):1174-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16752131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2003 Dec;270(5):371-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14595557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Oct;160(2):726-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22926318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Nov;142(3):1233-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16950861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15566-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17878302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1987 Jul;4(4):406-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3447015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jan 1;26(1):139-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19910308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2006 May;26(5):545-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16452068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2000;1(4):REVIEWS3001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11178255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15572-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17878303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2013 Jun;13(2):167-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23443578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11109-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12154226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(11):e79329</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24260197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Jan 30;279(5351):717-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9445479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014;14:27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24423166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Jun;158(2):811-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11404343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Dec;30(12):2725-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24132122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Aug 1;30(15):2114-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24695404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Oct;124(2):495-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11027699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2014 Jun;289(3):439-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24549852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015;10(7):e0130890</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26154104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7512-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23592721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Mar;177(6):1419-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7883697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Jan 10;493(7431):181-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23222542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Aug;123(4):1313-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10938350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Sep;133(1):73-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2014 Feb;19(2):99-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24139443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2014;65:69-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24579997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2002 Apr;19(4):521-252</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11919293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2015;16:29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25853487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2005 Nov;6(11):850-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16261190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2012 Nov;196:117-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23017906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Jul 18;345(6194):1251788</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25035500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jan;134(1):224-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14701917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2011 Sep;7(9):e1002150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21935348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2013 Dec;54(12):1931-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24204022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2011 Mar;4(2):199-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21307367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:282</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21167079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2015 Jan;241(1):29-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25486888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arabidopsis Book. 2014 Jan 13;12:e0169</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24465174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2001 Dec;4(6):488-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11641063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan;41(Database issue):D1159-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23180792</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
<li>États-Unis</li>
</country>
<region>
<li>Iowa</li>
<li>Québec</li>
<li>Washington (État)</li>
</region>
<settlement>
<li>Montréal</li>
</settlement>
<orgName>
<li>Université McGill</li>
</orgName>
</list>
<tree>
<country name="Canada">
<region name="Québec">
<name sortKey="Kaur, Simerjeet" sort="Kaur, Simerjeet" uniqKey="Kaur S" first="Simerjeet" last="Kaur">Simerjeet Kaur</name>
</region>
<name sortKey="Singh, Jaswinder" sort="Singh, Jaswinder" uniqKey="Singh J" first="Jaswinder" last="Singh">Jaswinder Singh</name>
</country>
<country name="États-Unis">
<region name="Iowa">
<name sortKey="Dhugga, Kanwarpal S" sort="Dhugga, Kanwarpal S" uniqKey="Dhugga K" first="Kanwarpal S" last="Dhugga">Kanwarpal S. Dhugga</name>
</region>
<name sortKey="Gill, Kulvinder" sort="Gill, Kulvinder" uniqKey="Gill K" first="Kulvinder" last="Gill">Kulvinder Gill</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001748 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001748 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26771740
   |texte=   Novel Structural and Functional Motifs in cellulose synthase (CesA) Genes of Bread Wheat (Triticum aestivum, L.).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26771740" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020